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Vesia M, Yan X, Henriques DY, Sergio LE, Crawford JD. Trans-
cranial magnetic stimulation over human dorsal-lateral posterior pa-
rietal cortex disrupts integration of hand position signals into the reach
plan. J Neurophysiol 100: 2005-2014, 2008. First published August 6,
2008; doi:10.1152/jn.90519.2008. Posterior parietal cortex (PPC) has
been implicated in the integration of visual and proprioceptive infor-
mation for the planning of action. We previously reported that
single-pulse transcranial magnetic stimulation (TMS) over dorsal—
lateral PPC perturbs the early stages of spatial processing for memory-
guided reaching. However, our data did not distinguish whether TMS
disrupted the reach goal or the internal estimate of initial hand
position needed to calculate the reach vector. To test between these
hypotheses, we investigated reaching in six healthy humans during
left and right parietal TMS while varying visual feedback of the
movement. We reasoned that if TMS were disrupting the internal
representation of hand position, visual feedback from the hand might
still recalibrate this signal. We tested four viewing conditions: /) final
vision of hand position; 2) full vision of hand position; 3) initial and final
vision of hand position; and 4) middle and final vision of hand
position. During the final vision condition, left parietal stimulation
significantly increased endpoint variability, whereas right parietal
stimulation produced a significant leftward shift in both visual fields.
However, these errors significantly decreased with visual feedback of
the hand during both planning and control stages of the reach move-
ment. These new findings demonstrate that /) visual feedback of hand
position during the planning and early execution of the reach can
recalibrate the perturbed signal and, importantly, and 2) TMS over
dorsal-lateral PPC does not disrupt the internal representation of the
visual goal, but rather the reach vector, or more likely the sense of
initial hand position that is used to calculate this vector.

INTRODUCTION

Goal-directed reaching involves transformations from visual
inputs to motor commands for the arm (Andersen and Buneo
2002; Crawford et al. 2004). Converging evidence spanning
primate neurophysiology (Batista et al. 1999; Battaglia-Mayer
et al. 2000; Buneo et al. 2002; Galletti et al. 2003), human brain
imaging (Astafiev et al. 2003; Beurze et al. 2007; Connolly et al.
2003; Medendorp et al. 2003, 2005; Prado et al. 2005), patient
studies (Karnath and Perenin 2005; Perenin and Vighetto 1988),
and transcranial magnetic stimulation (TMS) studies (Smyrnis
et al. 2003; van Donkelaar and Adams 2005; van Donkelaar et al.
2000; Vesia et al. 2006) suggests that posterior parietal
cortex (PPC) plays a critical role in these sensorimotor
transformations.

Here, using TMS, we posed the specific question of whether
human dorsal-lateral PPC is involved in incorporating initial
hand position information into the reach plan. Presumably, a
critical primary step in the planning of a goal-directed action is
integrating information relating reach target and hand position.
To reach for a visual object, the brain needs to specify the
required reach movement vector by computing the difference
between the internal estimate of current hand location and
position of the object in space. These two estimates encode
entirely independent information and are both equally neces-
sary in the computation of the difference vector between target
and hand position (Vindras et al. 2005). Therefore, it is not
possible to rely on one more than the other. Target location is
generally determined from visual information, but the sense of
hand position can be localized in space through both vision and
proprioception (Graziano et al. 2000; Rossetti et al. 1994,
1995). Topographic regions within PPC appear to play a
crucial role in the integration of target and limb information for
the planning of action in gaze-centered coordinates (Beurze et al.
2007; Buneo et al. 2002; Medendorp et al. 2005). Furthermore,
patients with optic ataxia—a disorder ascribed to parietal
lesions— exhibit impairments in the spatial integration of both
visual and proprioceptive position information (Blangero et al.
2007, 2008; Khan et al. 2007).

We previously reported that single-pulse TMS over dorsal—
lateral PPC perturbs the early stages of spatial processing for
memory-guided reaching (Vesia et al. 2006)—that is, when
vision of the hand was provided only at the end of the
memory-guided movement, stimulation of the left parietal
hemisphere significantly increased endpoint variability, inde-
pendent of visual field, with no horizontal bias. In contrast,
right parietal stimulation did not increase variability, but in-
stead produced a significantly systematic leftward directional
shift in reaching (contralateral to stimulation site) in both
visual fields. In addition, the same lateralized pattern persisted
with left-hand movement, suggesting that these aspects of
parietal control of reaching movements are spatially fixed.
Our data further suggested that TMS did not disrupt the
visual coordinates of the memory representation, but rather
the planned reach vector. However, our previous study did
not show whether TMS disrupted either /) the reach vector
directly, or one of the variables used to calculate this vector;
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2) the reach goal in motor coordinates; or 3) the sensory-
derived internal estimate of the initial hand position.

To test between these hypotheses here, we investigated
memory-guided reach accuracy and precision while varying
visual feedback of the hand during TMS of the left and right
dorsal-lateral PPC. We reasoned that if parietal TMS dis-
rupts only the memory of reach goal—which did not vary
between these paradigms—yvision of the hand position in
either the planning or control stage should not counteract the
perturbing effect of TMS on reach performance. Alterna-
tively, if parietal TMS were disrupting the internal sense of
initial hand position, visual feedback from the hand might
recalibrate this signal at the initiation, execution, or end of
movement. We found that the systematic reaching errors and
biases observed in our previous study significantly de-
creased when vision of the hand was provided during either
the planning or the execution of the movement. This shows
that TMS over dorsal-lateral PPC does not disrupt the
internal estimate of the visual goal location, but rather the
reach vector or, more likely, the sense of initial hand
position that is used to calculate this vector.

METHODS
General

Six subjects, 22-32 yr of age, provided written informed consent to
participate in the study. All participants were right-hand dominant, as
defined by the Edinburgh Handedness Inventory (Oldfield 1971), with
normal or corrected-to-normal visual acuity; in good-health; and,
according to a self-report, without any known contraindications to
TMS. All experiments received ethical approval by the York Univer-
sity Human Participants Review Subcommittee.

Localization of brain sites and TMS protocol

Single-pulse TMS was delivered at 60% of the stimulator output
using a MagStim stimulator (MagStim, Whitland, UK) and a 70-mm
figure-of-eight coil to the dorsal-lateral parietal cortex (Fig. 14). The
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locus of TMS stimulation has a spatial resolution of approximately 0.5
to 1 cm (Brasil-Neto et al. 1992; Wilson et al. 1993) with an estimated
penetration depth of roughly 2 cm (Epstein et al. 1990; Rudiak and
Marg 1994), reflecting stimulation of the underlying cortex near the
gray—white junction (Epstein et al. 1990). To localize left and right
parietal areas, the TMS coil was placed over P3 and P4, respectively,
according to the 10—20 EEG (electroencephalogram) coordinate sys-
tem of electrode placement (Herwig et al. 2003; Okamoto et al. 2004),
using commercially available 10-20 EEG stretch caps for 20 channels
(Electro-Cap International, Eaton, OH). Specifically, test sites (P3 and
P4) overlay left and right dorsal-lateral PPC, respectively, and in-
cluded Brodmann area 19, adjacent cortex in the superior and inferior
parietal lobule, a site that is situated over a part of the angular gyrus
in the inferior parietal lobule and close to a posterior part of the
adjoining intraparietal sulcus, and are consonant with cortical regions
underlying these electrode positions reported elsewhere (Herwig et al.
2003; Koch et al. 2008; Okamoto et al. 2004; Vesia et al. 2006).
Accordingly, these parietal stimulation sites could correspond to a
region slightly more lateral to the putative human parietal eye fields
(cf. Ryan et al. 2006), a region (or regions) thought to be homologous
to macaque LIP, identified in previous human brain imaging (for
review, see Culham and Valyear 2006; for examples, see Astafiev et al.
2003; Medendorp et al. 2003; Schluppeck et al. 2005; Sereno et al.
2001). Two additional control experiments were conducted to yield
estimates of nonspecific effects of TMS. First, we assessed perfor-
mance after stimulation of the vertex (Cz). Second, we conducted
“sham” trials in which the coil was held close to the subject’s skull,
but angled away so that no current was induced in the brain for
both left and right PPC. Last, we included a baseline “No TMS”
condition where subjects received no stimulation while performing
the task. The order of stimulation sites (left PPC, right PPC,
vertex), sham conditions (“sham” left PPC, “sham” right PPC), and
baseline control (No TMS) was counterbalanced across subjects in
each experimental session.

All stimulation parameters were in accordance with the safety
guidelines for magnetic stimulation (Wassermann 1998). Earplugs
were provided to dampen the noise associated with the discharge from
the TMS coil. None of the subjects reported any undesirable side
effects as a result of the stimulation.

L. . TMS GO
+ -10°F
” Memory Delay
© + ?1 755
Target (left or right) . S5
5s
+ () Hand
Central Fixation
10s
+ 0° m Eye
0 1 2 3
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Stimulation sites and experimental paradigm events. A: location of individual transcranial magnetic stimulation (TMS) sites for a typical subject are

shown for dorsal-lateral posterior parietal cortex (PPC) with high-intensity signal markers placed on the subject’s skull in the sagittal (fop left), coronal (top
right), and axial (bottom right) sections of T1-weighted magnetic resonance image (MRI). Bottom left shows a 3-dimensional rendering of the structural MRI.
Red circles indicate the 3 cortical sites chosen for stimulation using the 10-20 electroencephalogram (EEG) coordinate system of electrode placement—test sites:
left PPC (P3), right PPC (P4); and control site: vertex (Cz). B: delayed-reaching task. Subjects fixated a central cross for the duration of the trial. Then a peripheral
dot (reach target) was presented to the left or right of fixation for 500 ms. A brief TMS pulse was delivered 250 ms after this peripheral target extinguished (on
TMS trials only) during the memory-delay period. After the delay period, the central fixation cross changed color (“Go” signal) and signaled subjects to reach
to the remembered peripheral target location. C: eye- and hand-position traces (solid black lines) along with experimental paradigm events during the reaching
task plotted on a timescale. Thick gray boxes indicate the location and duration of the reach target (T) and fixation cross (F). Note that the eyes maintain central
fixation when subjects reach to remembered target locations in either the TMS or No TMS conditions.
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Experimental protocol

Our basic methodology was similar to that of our previous study
(Vesia et al. 2006). Subjects sat in a dimly lit room with the head
immobilized by a chin rest that aligned the dominant right eye with
the central fixation cross. Subjects made open-loop reaches with their
dominant right hand to peripheral targets displayed 30 cm away on a
liquid crystal display screen in the frontal plane. Kinematic data were
obtained by localizing the three-dimensional position of infrared
light-emitting diodes taped to the index fingertip (sampling rate: 200
Hz; accuracy: ~0.2 mm; Optotrak 3020, Northern Digital, Waterloo,
Ontario, Canada). Eye position was monitored using a head-mounted
eye-tracking system (sampling rate: 360 Hz; Applied Science Labo-
ratories, Bedford, MA).

Subjects performed the same basic task. At the start of each
experimental trial, a central fixation cross appeared for 1,000 ms
before a reaching target (0.5° circle) briefly appeared for 500 ms at
one of four different locations in the periphery (16 mm left, 32 mm
left, 16 mm right, 32 mm right relative to the central fixation cross).
A single pulse of TMS was delivered 250 ms after this peripheral

2007

target extinguished (on TMS trials only) during the 500 ms memory-
delay period. After the delay period, the central fixation cross changed
color and signaled subjects to reach to the remembered peripheral
target (Fig. 1B). Subjects maintained central fixation while reach-
ing to the remembered peripheral targets in each stimulation
condition (Fig. 1C).

Subjects performed two blocks of 12 trials to each of the four reach
targets (two in the left and two in the right visual field) for all six
stimulation conditions (No TMS, left PPC, “sham” left PPC, right
PPC, “sham” right PPC, vertex) in each of the four viewing conditions
(for a total of 2,304 trials; Fig. 2). We chose four different viewing
tasks to distinguish visual control signals: /) final vision of hand
position (FIN) or late visual feedback epoch (Fig. 2A); 2) full vision
of hand position (FUL) or planning and execution epochs (Fig. 2B); 3)
initial and final vision conditions of hand position (INI) or planning
epoch (Fig. 2C); and 4) middle and final vision conditions of hand
position (MID) or early visual feedback epoch (Fig. 2D).

As shown in Fig. 2, we occluded the view of the subject’s hand with
an adjustable, opaque Lucite apparatus in the horizontal plane to

No TMS M Left PPC M Right PPC
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(All Targets)
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B Full Vision
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FIG. 2.

<=

S5 .

Individual subject and mean reach responses for all 6 subjects. A—D represent mean endpoint confidence ellipses for one typical subject (left plots)

and mean elliptical fits for all 6 subjects (right plots) during the delayed reaching task in each of the 4 viewing tasks. Horizontal and vertical axes correspond
to the x- and y-coordinates in the frontal plane while subjects fixated the central cross. Four possible reach targets (solid black circle) are shown in eye-centered
coordinates from 32 mm left to 32 mm right of fixation. Individual reach endpoints are shown for control trials (No TMS; solid gray circle) and both left (solid
red square) and right (solid blue square) parietal TMS as well as their mean elliptical fits in the no stimulation (gray ellipses), left (red ellipses), and right (blue
ellipses) parietal stimulation conditions.
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provide visual information of the hand only at these specified epochs.
The length of the occlusion device varied for each viewing condition:
15 ¢cm in INI; 10 cm in MID; and 25 c¢cm in FIN. Since the distance
between initial hand position and target position was held constant,
the proportion of the occluded hand trajectory was constant indepen-
dent of the subjects’ arm length. In particular, this device allowed for
subjects to view only their final hand position in FIN, static and final
hand position in INI, hand position after movement onset in MID, and
hand position throughout the entire planning and execution epochs in
FUL. During INI and FUL conditions both the static hand position
before movement onset and visual reaching target were viewed
simultaneously in the periphery. These four viewing conditions were
performed in a blocked design and all sessions were counterbalanced
across subjects.

Our first viewing task (FIN; Fig. 2A) was similar to reaching in our
previous experiment (Vesia et al. 2006) and served to replicate the
TMS-induced reach deficits specifically produced by left and right
parietal stimulation (baseline control in the current experiment). Our
second viewing task (FUL; Fig. 2B) determined whether vision of the
hand could negate the specific parietal TMS-induced reach errors after
left and right parietal stimulation. Preliminary results showed that
vision negated these parietal TMS-induced reach deficits so we added
the latter two viewing tasks (INI and MID; Fig. 2, C and D, respec-
tively) to tease apart when vision of the hand might counteract the
perturbing effects of parietal stimulation. Note that both visual feed-
back of the hand at the end of the reach and proprioceptive informa-
tion of the hand throughout the entire reach plan and execution were
available for all four viewing tasks. Importantly, visual feedback
information of the hand position varied for each viewing task, whereas
visual information about the goal remained constant in all paradigms.
That is, subjects never received visual feedback regarding reach errors
relative to the goal so any differences between our paradigms were
related to sensory calibration of hand position.

Data analysis

Performance was characterized by measuring the accuracy and
precision of reach movement endpoints to visual targets in the hori-
zontal (x) and vertical (y) axes in the frontal plane. In particular,
reaching accuracy parameters were assessed by calculating: /) con-
stant error: the mean distance between the fingertip at movement end
and each target location; and 2) variable error: the distance of the
endpoints of each movement from the mean final position (95%
confidence ellipses of the scatter of fingertip at movement end). The
linear distance between the initial fingertip position and its movement
endpoint defined movement amplitude, whereas movement direction
was defined as the direction in degrees of this vector (Gordon et al.
1994; Messier and Kalaska 1997). Ellipses were fit to the two-
dimensional (2-D) data set in such a way that the horizontal and
vertical coordinates of the ellipse corresponded to the mean of the
data. The semimajor (principal axis) and semiminor (orthogonal to the
principal axis) axes correspond to the data with the highest and lowest
dispersion from the mean, respectively. Based on these axes, confi-
dence ellipses including 95% of the movement endpoint population
were constructed (Messier and Kalaska 1997; Sokal and Rohlf 1981).
Accordingly, constant error provides a measure of overall accuracy
with respect to target position and variable error gives a measure of
the global reaching scatter (Revol et al. 2003). The onset of reach
movements was determined as the moment when velocity exceeded
5% of peak tangential velocity. Movement offset for reach was
defined as the point at which the tangential velocity fell and remained
below 5% of peak velocity. Movement time for the reach was thus
obtained by subtracting the movement onset from the respective
movement offset. The statistical reliability of differences between
mean horizontal errors, elliptical areas, and mean movement times for
reach were tested using repeated-measures ANOVA and Tukey post
hoc tests.

, SERGIO, AND CRAWFORD

RESULTS

As illustrated in Fig. 2, the paradigm consisted of four
different tasks with regard to vision of the hand position
relative to distinct planning and control stages of a memory-
guided reach movement. Figure 2 (left plots) illustrates 2-D
reach endpoints in the frontal plane for control trials (no
stimulation; solid gray circle) and both left (solid red square)
and right (solid blue square) PPC stimulation for one typical
subject in the four viewing tasks. The fixation position was
always straight-ahead (aligned with midsagittal plane of head),
but the reach targets (solid black circle) varied from 32 mm left
to 32 mm right of this fixation position. To quantify the
systematic pattern of the reaching errors (i.e., accuracy) and
depict the intraindividual variability (i.e., precision) of the
reaching performance, we fitted 95% confidence ellipses to the
movement endpoints for each of the four different reach targets
for every subject in the four viewing tasks, and then averaged
the parameters of these ellipses across subjects (Fig. 2, right
plots; see METHODS).

Figure 2 shows mean reach response of an individual subject
(left plots) and all six subjects (right plots) for the baseline No
TMS trials (gray ellipses) and both left (red ellipses) and right
(blue ellipses) PPC stimulation for each of the four viewing
tasks. In baseline No TMS trials (gray ellipses), subjects
reached too far peripherally relative to the central fixation point
(Bock 1986; Henriques et al. 1998), but were otherwise fairly
accurate. Consistent with our previous study (Vesia et al.
2006), parietal stimulation produced an increase in reach error
and bias when vision of the hand was provided only at the end
of the memory-guided movement (FIN; Fig. 2A). In particular,
left PPC stimulation increased endpoint variability (red el-
lipses; Fig. 2A), whereas right PPC stimulation produced a
systematic leftward directional shift in horizontal reaching,
independent of visual field (blue ellipses; Fig. 24), compared
with baseline No TMS trials (gray ellipses; Fig. 2A). As clearly
shown in Fig. 2B, we observed an improvement of reach
accuracy and precision for both left and right PPC stimulation
when vision of the hand position was provided throughout the
task—in both the planning and control stages (FUL)—com-
pared with the baseline FIN condition (Fig. 24). As shown in
Fig. 2C, after a brief simultaneous presentation of the static
hand position before movement onset and target position dur-
ing the planning stage (INI), endpoint variability and system-
atic leftward horizontal bias in reach endpoints decreased
for left and right parietal stimulation, respectively. The
same is true for reach responses when vision of hand
position was provided immediately after movement onset
during the early visual feedback stage (MID; Fig. 2D),
suggesting that the inaccurate estimate of initial hand posi-
tion can be visually updated at any stage in the planning and
early execution of the reach movement. In some cases,
TMS-induced errors were corrected during the hand trajec-
tory in the MID condition, whereas these errors appeared to
be negated from the start during the INI and FUL conditions
(see Supplemental Fig. S1).!

To quantify these observations, we calculated the corre-
sponding reach accuracy (horizontal reach error) and reach
precision (elliptical area) for each stimulation and viewing
condition in both left (LVF) and right (RVF) visual fields as

' The online version of this article contains supplemental data.
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shown in Fig. 3. These reach performance parameters were
analyzed by two separate two-way repeated-measures ANOVAs
for each visual field with factors viewing task (four levels:
final, full, initial, or middle) and stimulation condition (six
levels: No TMS, left PPC, “sham” left PPC, right PPC,
“sham” right PPC, or vertex).

Figure 3, A and B illustrates the systematic horizontal error
for all stimulation conditions for each of the four viewing tasks
in the LVF (Fig. 3A) and RVF (Fig. 3B). Consistent with our
previous study (Vesia et al. 2006), we found that there was a
significant main effect for stimulation for the mean horizontal
error in both LVF [F(5 55, = 2.51; P < 0.05] and RVF [F 5 55, =
4.49; P < 0.01]. However, viewing task was not significant
[LVF: F345 = 0.99; P = 042; RVF: F3,5 = 1.55; P =
0.24]. Significance was also found for the interaction between
the factors view and stimulation [LVF: F(;5;5, = 6.38; P <
0.01; RVF: F(y575 = 21.49; P < 0.01]. Post hoc analyses
(Tukey) showed that right PPC stimulation with vision only at
the end of the reach (FIN; solid red square) significantly biased
the mean horizontal error compared with all other experimental

2009

conditions for targets in both LVF and RVF (P < 0.01 in all
comparisons; Fig. 3, A and B). Specifically, the directionality
of the mean horizontal accuracy (merging data for all reach
targets in the left and right visual fields) for right PPC stimu-
lation in FIN relative to baseline No TMS for its respective
viewing task (group mean response = SE: FIN = —8.76 *
2.54 mm, solid red square) was systematically shifted leftward
compared with the other viewing tasks (FUL: 0.77 = 0.74 mm,
solid blue diamond; INI: 0.39 = 0.43 mm, solid green triangle;
MID: —2.51 = 0.99 mm, solid black circle).

To verify that our results were not confounded by target
position (i.e., reach targets of different retinal eccentricities),
we compared reach endpoint accuracy of all four reach targets
for all stimulation conditions relative to baseline No TMS in
all viewing tasks. Consonant with our previous findings
(Vesia et al. 2006), we confirmed that target position did not
influence reach performance [F (359, = 0.59; P = 0.63].

We repeated the same analyses for elliptical area as shown
in Fig. 3C for the LVF and Fig. 3D for the RVF. As is clearly
shown, irrespective of visual field, there was a significant main

LVF RVF
NoTms | A — i QERO———— B o—m—o
Left PPC ¢ o+—Ep———— e ——+
Sham Left PPC ——o—¢l-<¢—— ' ¢ ——@d—
* *
RightPPC | —l—— o <o ) — ., — e
Sham Right PPC —— @B o +——Ip<{¢
Vertex >—o—0—‘—<—0—H X = -
20 18 -6 14 12 -10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 18 20
Horizontal Error (mm)
600
C D *
500 1 +
‘\T-\ *
&
£ 4001
3
S 3001
<
(0]
N RN oy g
T ’ IR I
100 1 ® %*
¢ : ¢ * e & &
0
No Left Sham Right Sham Vertex No Left Sham Right Sham Vertex
™S PPC Left PPC Right ™S PPC Left PPC Right
PPC PPC PPC PPC
M Final Vision @ WMiddle Vision
A Initial Vision @Full Vision

FIG. 3.

Mean horizontal error and elliptical area in all 6 stimulation conditions. A and B: mean horizontal error for left visual field (LVF, A) and right visual

field (RVF, B) reach targets for all 6 subjects and 4 viewing tasks: final vision (solid red sqaure); full vision (solid blue diamond); initial vision (solid green
triangle); middle vision (solid black circle). C and D: mean elliptical area for LVF (C) and RVF (D). Asterisks indicate values showing significant differences

(P < 0.01) using Tukey post hoc tests. Bars represent SE.
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effect for view [LVF: F5 15, = 33.24; P < 0.01; RVF: F(5 15, =
38.61; P < 0.01] and stimulation [LVF: F5,5) = 6.31; P <
0.01; RVF: F5 55, = 11.83; P < 0.01], as well as an interaction
between these factors [LVF: F(;5;5, = 2.75; P < 0.01; RVF:
F(1575) = 9.71; P < 0.01]. Post hoc analyses showed that there
was significantly greater reach endpoint variability for left PPC
stimulation in FIN (solid red square) compared with all other
experimental conditions (P < 0.01, in all comparisons; Fig. 3,
C and D). In particular, when we compared left parietal
stimulation for each of the four viewing tasks (merging data for
all reach targets in the left and right visual fields), endpoint
variability (ellipse area) was about 67% larger on average in
FIN (455.89 *+ 109.76 mm?; solid red square) compared with
the other viewing tasks (FUL: 87.63 * 25.58 mm?, solid blue
diamond; INI: 169.49 *+ 74.95 mm?, solid green triangle; MID:
193.99 + 52.99 mm?, solid black circle). In fact, endpoint
variability robustly decreased nearly threefold with concomi-
tant vision of the target position and hand position (INI)
compared with FIN during left parietal stimulation. In addition,
we also observed a comparable, significant influence on
endpoint variability when vision was provided throughout
the reach plan and movement (FUL vs. FIN; FUL vs. INI;
FUL vs. MID; P < 0.01 in all viewing task comparisons;
Fig. 3, C and D). Again, no differences were found between the
four reach target positions [F3 5y = 2.08; P = 0.13].

Last, we conducted the same analysis on mean movement
times of reach movements. We found that there was a signif-
icant main effect for stimulation [LVF: F(5,5 = 7.26; P <
0.01; RVF: Fisas) = 4.35; P < 0.01], as well as an interaction
between the view and stimulation factors [LVF: F( 575 =
6.41; P < 0.01; RVF: F(;5 75 = 8.67; P < 0.01]. However, the
main effect for viewing task was not significant [LVF: F3 ;5 =
0.24; P = 0.86; RVF: F5 5, = 1.35; P = 0.29]. In particular,
post hoc analyses revealed that only parietal stimulation con-
ditions in the MID condition showed a statistically significant
increase in movement time compared with all other experimen-
tal conditions (P < 0.01; Table 1). This is consistent with the
idea that the MID viewing task allowed for on-line correction.
Likewise, these movement times were not significantly differ-
ent across all four reach targets in both visual fields [F; 5, =
0.15; P = 0.93].

DISCUSSION

The present study corroborates and extends our previous
TMS findings that demonstrate the critical role of dorsal-
lateral PPC in memory-guided reaching (Vesia et al. 2000).
Here, by varying visual feedback of hand position and main-
taining sensory information of the reach target location con-
stant, we demonstrate for the first time that TMS over the

TABLE 1.

, SERGIO, AND CRAWFORD

dorsal-lateral PPC directly disrupts the reach vector or, more
likely, the internal sense of initial hand position that is required
to calculate this vector, rather than the internal representation
of the reach goal. Critically, these systematic reaching errors
and biases significantly decrease when vision of the hand was
provided during either the planning or execution stages of the
reach movement. Given that this visual information was irrel-
evant to the goal of the movement, and that presentation of the
goal did not vary, performance could improve only if this
visual information was used to update an internal estimate of
initial hand position, which could be disrupted by parietal
TMS. This suggests that /) dorsal-lateral PPC possesses an
estimate of initial hand position in the early stages of the reach
plan; 2) this estimate is used in the calculation of the reach
vector (i.e., reach vector = goal position — hand position); and
3) that this estimate can be visually updated at any stage in the
planning and early execution of the reach.

These findings are consistent with the notion that the parietal
cortex is involved in the early computation of the extrinsic
reach vector command (Buneo et al. 2002; Desmurget et al.
1999). It is likely that the reach goal information required to
compute this vector is represented elsewhere, for example, in
the more medial—posterior region of the parietal cortex, often
called the “human parietal reach region” (Connolly et al. 2003;
Culham and Valyear 2006; Culham et al. 2006; Fernandez-
Ruiz et al. 2007). Based on this, we predict that TMS of the
parietal reach region would produce the opposite effect: dis-
ruptions of the reach vector as a function of the goal, not the
sense of initial hand position.

Our findings show that TMS over the dorsal-lateral PPC
disrupts the reach vector command in our FIN vision paradigm,
perhaps by perturbing the initial hand position input required to
calculate this vector. We also should consider a second possi-
bility—that TMS directly perturbs the reach vector after infor-
mation of hand position is subtracted from goal position.
Regions of PPC this far posterior are not generally thought to
encode reach kinematics independent of the goal and hand
positions (Buneo and Andersen 2006; Fernandez-Ruiz et al.
2007; Medendorp et al. 2008). Nonetheless, we will consider
several theoretical frameworks that assume the reach vector
was directly perturbed.

First, if the reach vector is initially calculated, then perturbed
directly by TMS, and then not updated, vision of the hand
could not influence reach performance. This contradicts our
FUL, INI, and MID vision parietal stimulation data. Second,
the vector could be calculated, then perturbed directly by TMS,
but then updated continuously over the time course of the
movement. However, even if vision dominates proprioception
when both are present, proprioception is still used when vision
is not available (Andersen et al. 1997; Desmurget et al. 1995;

Summary of movement times in the four viewing tasks for all stimulation conditions

No TMS Left PPC

“Sham” Left PPC

Right PPC “Sham” Right PPC Vertex

Final vision 669.89 (41.61) 659.85 (37.38)

Full vision 645.58 (46.31) 640.16 (45.64)
Initial vision 671.57 (70.44) 657.42 (72.82)
Middle vision 687.67 (19.77) 800.76 (32.48)*

691.84 (50.04)
665.51 (56.32)
675.27 (83.28)
687.57 (18.03)

690.85 (51.58)
674.48 (54.71)
661.98 (67.51)
819.01 (25.97)*

675.73 (49.44)
650.58 (54.15)
660.41 (56.99)
686.74 (13.17)

683.45 (44.81)
657.71 (51.14)
676.48 (68.69)
662.66 (18.05)

*Values are means and SEs are shown in parentheses for merged data for all 6 subjects for all 4 targets in both visual fields. All movement times are in
milliseconds. Statistical analyses indicated a significant difference in movement times for left and right PPC stimulation in the middle vision task compared to
all other stimulation conditions and viewing tasks. Asterisks indicate values showing significant differences, P < 0.01, using Tukey post hoc tests.
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Graziano et al. 2000; Rossetti et al. 1995; Wise et al. 1997).
Therefore this model contradicts our FIN task, where the
TMS-induced errors occurred despite the presence of constant
proprioceptive feedback. Third, a hybrid combination of the
latter two frameworks is possible. Suppose that /) the system
can use either vision or proprioception to calculate the reach
vector; 2) TMS then perturbs the reach vector; but then 3) only
vision of hand position (but not proprioception) can be used to
update this vector. In this scenario, proprioception would not
be able to correct the TMS-induced errors in the FIN condition,
but vision would be able to correct the errors in the other
conditions (which is what we found). We prefer the simple
explanation that parietal TMS disrupts the sense of hand
position and this erroneous signal is overridden by vision of the
hand. However, these two possibilities are so closely interre-
lated that they cannot be disentangled in the present experi-
ment. Further, both agree that it was not the goal, but rather
something correlated to hand position, that was disrupted in
our experiment.

How, then, is this hand position information integrated with
goal information to calculate the reach vector? One possible
explanation may be that parietal cortex selectively mediates the
integration of initial hand position information into the reach
plan on the basis of both visual and proprioceptive signals.
This scheme is consistent with evidence that PPC orchestrates
these visual, somatosensory, and motor signals in the early
planning stages of a reach (Andersen et al. 1997; Batista et al.
1999; Battaglia-Mayer et al. 2000; Caminiti et al. 1999; Snyder
et al. 1997). The present experiment, however, cannot address
whether the hand position signal that is disrupted is proprioceptive
or visual in origin, or both. Given the multimodal nature of the
cells in the cortical regions that we stimulated, it is likely that both
these signals provide initial hand position information in everyday
situations, where both vision and proprioception are available.

Our previous results (Vesia et al. 2006) showed that a
similar pattern of TMS-induced reach deficits persists, remain-
ing spatially fixed, with the nondominant left-hand movement.
These findings suggested that our dorsal-lateral PPC stimula-
tion site is responsible for the spatial representation of the
end-effector position independent of the hand used. However,
other studies have suggested that left PPC and right PPC are
preferentially responsible for control of the contralateral hand
(Chang et al. 2008; Medendorp et al. 2005; Perenin and
Vighetto 1988; Rice et al. 2007). The differences between
these studies could be due either to the precise localization of
stimulation or to the modulation of neural activity in remote
and interconnected cortical regions within the network (Paus
2002).

Primate neurophysiology has identified a region in the me-
dial aspect of the PPC—often called the “parietal reach re-
gion” (PRR)—that encodes the transport aspect of reach (Batista
et al. 1999; Calton et al. 2002; Snyder et al. 1997). Human PPC
contains a region (or regions), perhaps analogous to monkey
PRR—Ilocated more medially relative to the parietal stimula-
tion sites used in the current study (Astafiev et al. 2003; Beurze
et al. 2007; Connolly et al. 2003; DeSouza et al. 2000;
Medendorp et al. 2003, 2005; Prado et al. 2005)—that selec-
tively encodes the visual reach goal (Fernandez-Ruiz et al.
2007). Converging evidence spanning primate neurophysiol-
ogy (Battaglia-Mayer et al. 2001; Buneo et al. 2002) and
human neuropsychology (Beurze et al. 2007; Blangero et al.
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2007, 2008; Khan et al. 2007; Medendorp et al. 2005; Perenin
and Vighetto 1988) suggests that PRR and surrounding re-
gions, which are linked by reciprocal association connections,
are modulated by hand position in a manner that potentially
could be used to encode the reach vector. Perhaps the region of
parietal cortex targeted in our study may be disrupting a
primary site that directly inputs to these areas. Alternatively,
we cannot rule out that stimulation of dorsal-lateral PPC could
potentially propagate to more distant sites indirectly via inter-
connected areas across the neuronal circuit that are involved in
reach planning. Our knowledge concerning the TMS mecha-
nisms of action, however, is still limited to drawing absolute
conclusions (Pascual-Leone et al. 2000; Robertson et al. 2003).

Primate neurophysiology further suggests that parietal cor-
tical areas encode target location in gaze-centered coordinates
(Batista et al. 1999; Colby and Goldberg 1999; Snyder et al.
1997). It recently has been shown that hand proprioceptive
information—even in the absence of vision—is also trans-
formed into a gaze-centered coordinate system (Blangero et al.
2005; Buneo et al. 2002). This has led to the proposal that
hand—target comparisons occur in gaze-centered coordinates at
the level of PPC (Andersen and Buneo 2002; Batista et al.
1999; Blohm and Crawford 2007; Buneo and Andersen
2006; Medendorp et al. 2005). Alternatively, hand and
target positions could be compared in body-centered coor-
dinates (Carrozzo et al. 1999; Flanders et al. 1992; Hen-
riques et al. 1998; Mclntyre et al. 1997, 1998) or in both
gaze- and body-centered coordinates (Battaglia-Mayer et al.
2001, 2003; Khan et al. 2007). Any of these schemes is
consistent with our current data.

Our findings are also consistent with the results from both
optic ataxic and neglect patients (Husain et al. 2000; Jakobson
et al. 1991; Mattingley et al. 1998; Milner et al. 2003; Roy et al.
2004) and previous TMS studies (Koch et al. 2008; Smyrnis
et al. 2003; Vesia et al. 2006) that suggest the parietal cortex is
involved in the planning of reach movements. In contrast,
several other patient studies (Blangero et al. 2008; Grea et al.
2002; Pisella et al. 2000; Schindler et al. 2004) and TMS
studies (Desmurget et al. 1999; Glover et al. 2005; Rice et al.
2006; Tunik et al. 2005) have suggested that PPC also plays a
critical role in the on-line control of reaching and grasping, but
not in the planning phase of the movement (Rice et al. 2000).

The difference between these interpretations could arise
from either methodological or anatomical differences. For
instance, in Rice et al. (2006), dual-pulse TMS was delivered
during the viewing period of stimulus presentation, whereas in
our study single-pulse stimulation was delivered during the
memory-delay period after stimulus presentation. Also, these
discrepancies may be due to the different conditions used—
such as reaching or grasping with unconstrained gaze in pre-
vious TMS studies—versus reaching to peripheral visual tar-
gets with central fixation in our current experiment. Here,
subjects used peripheral vision to view both the target and the
visual feedback of the hand during the reach, which is unusual
in a more natural context. We tested subjects in this manner to
account for possible visual field effects, which did not turn out
to influence the TMS-induced errors. Although optimal accu-
racy is achieved when hand and eye movements are com-
bined—and subjects normally reach to a target after foveal
capture—there may be situations where foveal capture is in-
deed not possible, or is not optimal, such as when reaching for
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a cup of coffee while continuing to read the newspaper.
Besides, empirical evidence suggests that peripheral vision or
memory (or both) is often used in naturalistic settings, without
degrading hand movement accuracy (Johansson et al. 2001).
Therefore our task is natural in a least some contexts. However,
foveation might be a more important factor for studies of brain
areas that encode the goal, as opposed to the hand position
network that we perturbed here.

Moreover, the site of stimulation in our current study mainly
targeted the inferior parietal lobule in a region of the posterior
aspect of the intraparietal sulcus, whereas in previous studies
TMS was applied to more anterior parietal regions at the
junction between the anterior aspect of the intraparietal sulcus
and the inferior postcentral sulcus. Given the distinct cortical
systems for central and peripheral vision (Clavagnier et al.
2007; Karnath and Perenin 2005; Prado et al. 2005), and
numerous functional subregions within parietal cortex (Culham
and Kanwisher 2001; Culham and Valyear 2006; Culham et al.
2006), these differences may be crucial.

Finally, our finding that early visual feedback recalibrates
misperceptions of hand position confirms existing psychophys-
ical experiments that show the importance of visual informa-
tion about the position of the hand before movement onset for
action planning (Desmurget et al. 1995, 1997; Elliott and
Madalena 1987; Prablanc et al. 1979; Rossetti et al. 1994,
1995; Vindras et al. 1998). Recent imaging findings also have
implicated the human PPC in the maintenance of a coherent
body image when the brain receives conflicting multisensory
information—i.e., sensory discrepancy between limb movement
positions sensed by vision and proprioception (Clower et al. 1996;
Inoue et al. 1997, 2000). Further, a detailed case study suggests
that the parietal cortex is critical for sensorimotor integration
and maintenance of an internal estimate of limb position
(Wolpert et al. 1998). This supports the existence of a
mechanism that combines visual and proprioceptive signals
to provide the most accurate estimate of initial hand position
(Desmurget and Grafton 2000).
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