Manual tracking of the double-drift illusion

B. Marius 't Hart ${ }^{1}$, Denise Y.P. Henriques ${ }^{1}$, Patrick Cavanagh ${ }^{1,2,3}$

DARTMOUTH
(1)
YORK

1) Centre for Vision Research, York University, Toronto, ON, Canada,
2) Department of Psychology, Glendon College, Toronto, ON, Canada,
3) Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA

Limits on the double-drift illusion
The perceived path in the double-drift illusion periodically returns to the veridical position. What causes these resets?

Given the true path (from the origin, along the Y axis) and varying strengths of the illusion, a spatial limit would predict that resets occur once the perceived location reaches a set horizontal distance from the start position, regardless of the speed. A temporal limit would predict a fixed vertical offset from the initial position.

On a mirror setup participants traced the perceived path of the stimulus, without seeing their hand. First, six participants tracked an ongoing double-drift stimulus (external: $13.5 \mathrm{~cm} / 3 \mathrm{~s}$, internal: 3 cps or $\sim 5.15 \mathrm{~cm} / \mathrm{s}$). A second group ($\mathrm{N}=9$) both indicated the initial perceived movement direction as a measure of illusion strength, and re-traced their percept of a single movement of 13.5 cm in 3 or 4 seconds at 2,3 or 4 cps internal drift.

Tracking reflects the illusion
In a continuous tracking task, the direction of tracking responded to the strength of the illusion (c.f. Nakayama \& Holcombe, 2018).

In the second experiment we get reset coordinates by localizing the first location where the derivative changes sign, shown here as the end of the purple trace:

The double-drift illusion resets at virtually a constant horizontal distance from the true position

The brain represents both the true position for eye movements and the illusory, perceived location for pointing (Lisi \& Cavanagh, 2017). Resets could be triggered when the distance between these two positions exceeds a threshold.

Weighted average model
With the slope of the initial trace (at 2 cm distance from the start), we can fit a model:

$$
\begin{aligned}
& X=a^{*} L x+(1-a)^{*} L y / \text { slope } \\
& Y=a^{*} L x^{*} \text { slope }+(1-a)^{*} L y
\end{aligned}
$$

Lx: 1.12 cm
Ly: 2.07 s
a: 82.5\%
spatial limit (on X) temporal limit (on Y) weight: 83% space, 17% time

