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Implicit motor learning within three 
trials
Jennifer E. Ruttle1,2*, Bernard Marius ’t Hart1,3 & Denise Y. P. Henriques1,2,3

In motor learning, the slow development of implicit learning is traditionally taken for granted. While 
much is known about training performance during adaptation to a perturbation in reaches, saccades 
and locomotion, little is known about the time course of the underlying implicit processes during 
normal motor adaptation. Implicit learning is characterized by both changes in internal models and 
state estimates of limb position. Here, we measure both as reach aftereffects and shifts in hand 
localization in our participants, after every training trial. The observed implicit changes were near 
asymptote after only one to three perturbed training trials and were not predicted by a two-rate 
model’s slow process that is supposed to capture implicit learning. Hence, we show that implicit 
learning is much faster than conventionally believed, which has implications for rehabilitation and 
skills training.

An established convention of motor learning asserts that automatic or implicit components of learning emerge 
later in training following an initial more explicit or declarative stage, even for skill-maintenance tasks, like 
 adaptation1–6. Perturbations in reach, saccade and locomotion adaptation evoke relatively quick adjustments 
to  behaviour4,6–12, and some work has attempted to either infer implicit learning based on the assumption that 
implicit and explicit adaptation simply add to produce  behavior13 or measure it in paradigms that require explic-
itly suppressing natural responses to visual  feedback11,12. However, it has not been directly measured how quickly 
implicit changes emerge. Two main implicit changes involved in error-based learning are updates in internal 
models as well as the resulting changes in our state  estimates14–16. Here, we show that implicit changes during 
visuomotor adaptation occur immediately and do not require prolonged training at all.

One hallmark of implicit learning: reach aftereffects, is the persistence of motor changes even when the per-
turbation is removed, which is thought to reflect a change in internal models during  adaptation15,17. Yet reach 
aftereffects are almost always measured after hundreds of training trials, so its time course is largely unknown.

Another implicit change is a shift in our perceived hand location or state estimate that occurs in both visuo-
motor and force field  adaptation14,18–22. A further shift in estimates of hand position can be attributed to efferent-
based updates of the internal  model21,23. These two sources of hand location estimates have been shown to be 
unaffected by cognitive strategy and are largely  independent24,25. Work from our lab has shown that the changes in 
hand proprioception following passive exposure to a visual discrepancy, without self-generated movements, can 
partly account for the resulting changes in reach aftereffects as  well14,26,27. Thus, while afferent- and efferent- based 
estimates of hand position are small, they are robust and contribute to movement planning and reach aftereffects.

It is thought that implicit learning arises slowly with exposure to a perturbation along with explicit compo-
nents of  learning1,2,6,13. Our lab has shown that reach aftereffects and proprioceptive recalibration emerge within 6 
 trials28,29. In the current study, we push this further by having participants alternate between training and testing 
trials, while adapting to a 30° rotation, its reversal and then error-clamped trials. Each group of participants per-
formed one type of testing trial that could assess either changes in state estimates or internal models. By probing 
implicit changes after each training trial, we increase the resolution of measuring implicit changes greatly, and 
can quantify their rate of change throughout learning.

The time course of adaptation has been described by a state-space model that includes two processes, a process 
with slow learning and forgetting and a process with fast learning and  forgetting30. The model’s fast and slow 
processes have been suggested to map onto explicit and implicit components of learning  respectively13. While 
not the main focus of this study, here we compare the rate of change of the models’ slow process with that of 
actual measures of implicit learning.

We find changes in reach aftereffects and state estimates to occur much faster than expected. State estimates 
asymptote after a single trial and are well described as a proportion of the perturbation. Our results challenge 
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the convention that implicit learning is slow, and show that some implicit changes emerge before, and likely 
independently and not inferable from, explicit changes in motor control.

Results
Reach aftereffects. To test how quickly reach aftereffects emerge, 47 participants adapted to an imposed 
perturbation interleaved with no-cursor test trials. We began by investigating whether these test trials affected 
reach-training using a control group (N = 32) that paused instead. Figure 1a shows the reach training perfor-
mance for both groups. No-cursor reach trials, and two-rate model fits are shown in Fig. 1b, and rates of change 
are listed in Table 1. 

Training trials. To investigate whether the type of intervening test trial affects training performance 
(Fig. 1a), we conducted a mixed ANOVA with group (no-cursor or pause) and trial set (R1, R1_Late, R2 and EC, 
described in Figs. 1 and 6). We found an effect of trial set [F(3,186) = 415.30, p < 0.001, η2 = 0.82] and an interac-
tion between trial set and group [F(3,186) = 11.78, p < 0.001, η2 = 0.11]. The interaction seems to be driven by 
the slower learning and much smaller rebound in the no-cursor paradigm. Follow-up t-tests show a significant 
difference between the pause and no-cursor group during R1, R1_late, R2 and EC trials sets with p < 0.01. We fit 
the two-rate model to the averaged reach deviations for each group (see Fig. 1b and Table 2). The model predicts 
average performance well for the pause group and reasonably well for the no-cursor group. The smaller learn-
ing rate parameter values for the no-cursor group versus the pause group (Table 2), are mimicked in the rates 
of change (Table 1), which may be explained by slight interference from the no-cursor trials. Nevertheless, the 
model fits warrant comparison between reach aftereffects and the model’s slow process.

Figure 1.  Performance across measures for pause and no-cursor groups. (a) Reach training performance 
averaged across all participants for the two groups. (b) Two-rate model fit (black and green dashed lines), and 
no-cursor test trials in solid green. For reference, reach performance for the no-cursor group is plotted again in 
grey. All solid lines are an average of all participants in that group, shaded regions are 95% confidence intervals. 
Trials included in analysis are as follows: R1 = trials 65–68; R1_Late = trials 221–224; R2 = trials 237–240; 
EC = 273–288.

Table 1.  Rate of change and asymptote for reach training trials and measures of implicit learning, for each of 
the experimental groups, calculated for the first rotation. Reach training trials are represented in the first three 
rows, then the slow process predicted by the model, with the final three rows being the implicit measure test 
trial associated with that training group. Averages with 95% CI are reported for all values.

Rate of change

No-cursor Pause Active Passive

Reach training

Rate of change 13.8% [10.7–17.7%] 36.5% [28.3–49.8%] 15.4% [10.8–21.8%] 27.0% [21.4–34.8%]

Asymptote 23.2° [22.0°–24.3°] 29.1° [28.5°–29.7°] 24.7° [22.7°–26.2°] 28.6° [27.8°–29.5°]

Saturation trial 21 [16–27] 9 [6–13] 16 [11–23] 12 [9–15]

Slow process

Rate of change 3.4% [3.1–3.8%] 2.8% [2.5–3.2%] 2.1% [1.9–2.4%] 3.5% [3.0–4.1%]

Asymptote 21.4° [19.8°–23.0°] 27.2° [25.5°–28.6°] 26.0° [23.9°–27.8°] 25.2° [22.6°–27.4°]

Saturation trial 74 [67–82] 96 [85–109] 117 [107–130] 64 [54–74]

No-cursor or localization

Rate of change 56.9% [27.4–58.5%] – 93.9% [51.3–95.7%] 100% [29.0–100%]

Asymptote 15.3° [13.8°–16.9°] - 9.8° [8.1°–11.6°] 6.9° [5.7°–8.2°]

Saturation trial 3 [1–3] – 1 [1–3] 1 [1–6]
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Testing trials. We found reach aftereffects were present at the first trial set, after only 1–4 rotated train-
ing trials, compared to those of no-cursors from the aligned phase [t(46) = 20.97, p < 0.001, d = 4.12, η2 = 0.82, 
10.94°]. Using an exponential decay model (see methods) we calculated a rate of change and the trial at which 
the no-cursor deviations are at asymptote, focusing on the first rotation. We found reach aftereffects had a rate 
of change of 56.9% (CI 27.4–58.5%), attaining asymptote within 3 trials (see Table 1 for all rate of change val-
ues). Both the substantial rate of change and, early trial at which changes saturate in no-cursor reaches, i.e., the 
implicit reach aftereffects, show that implicit adaptation develops rapidly. In fact, aftereffects saturate well before 
reach training does (56.9% > 13.8%, 95% CI 10.7–17.7%), which asymptotes only at the 21st trial for this group 
and 9th trial for the control, pause group.

Furthermore, the rate of change of the slow process (3.4%) is much lower than the rate of change of the reach 
aftereffects (56.9% > 3.4%, 95% CI 3.1–3.8%). Additionally, fitting the two-rate model’s slow process to the reach 
aftereffects, to see if the model’s output still matches reaches increases the AIC from 13.9 to 29.17 significantly 
decreasing the fit (relative log-likelihood: 0.0005; see OSF https ://osf.io/9db8v / for details). This all shows the 
rate of change in reach aftereffects is much higher than what would be expected of a slow, implicit process, or 
indeed that of the two-rate model’s slow process.

Hand localization shifts. An additional 64 participants adapted to the same perturbation schedule, inter-
leaved with test trials that measured estimates of the hand location after the trained hand was displaced by a 
robot manipulandum (passive localization, N = 32, Fig. 2a–d) or by the participant themselves (active localiza-
tion, N = 32, Fig. 2a–c). We once again used the pause group as a control (Fig. 2a).

Training trials. We conducted an ANOVA with the same factors as the previous experiment, trial set and 
group (active localization, passive localization and pause) on training performance (Fig. 2a). As expected, reach 
deviations varied across trial set [F(3,279) = 537.99, p < 0.001, η2 = 0.80], and there was a significant interaction 
between trial set and group [F(6,279) = 8.29, p < 0.001, η2 = 0.11], but no effect of group on its own [F(2,93) = 1.90, 
p = 0.15]. Follow-up ANOVAs show that learning was slower in active localization compared to the other con-
ditions [all p < 0.001]. We also fit the two-rate model to the reach data from the passive and active localization 
groups, shown in Fig. 2c,d. The model fits the reach data well, but as shown in Table 2, the learning rates for the 
active group are slightly lower than the passive or pause group. Importantly, the retention parameters are very 
similar across all three groups, indicating the same ability to retain what was learned. In summary, despite a 
small effect of test-type, the two-rate model explains the reach data well.

Test trials. We also compare the time course of changes in estimating the location of the unseen, adapted 
hand across training: for the passive vs. active localization shown in Fig. 2b. Estimates of hand position show a 
rapid shift on the first trial after the initial perturbation is introduced for both active (8.95°) and passive localiza-
tions (6.46°). These shifts do not increase with further training with both groups achieving 93.9% and 100% of 
asymptote within one rotated training trial. Seeing as changes in state estimates of hand location appear incred-
ibly fast, these localization shifts can not follow from motor adaptation. Instead, they directly result from the 
perturbation in a single trial.

Despite similarly quick shifts in hand localization (Fig. 2b), a mixed ANOVA revealed a significant difference 
in hand estimates between the active and passive localization groups [F(1,62) = 6.28, p = 0.014, η2 = 0.05], across 
trial sets [F(3,186) = 96.97, p < 0.001, η2 = 0.43] and an interaction between trial set and group [F(3,186) = 2.93, 
p = 0.04, η2 = 0.02]. Follow-up t-tests indicate larger shifts in felt hand position in the active localization group 
both during the initial [t(51.43) = 2.37, p = 0.028, d = 0.59, η2 = 0.08, 2.92°] and final [t(61.78) = 2.98, p = 0.016, 
d = 0.74, η2 = 0.11, 4.35°] trial set of the first rotation and at the end of the error clamp phase [t(61.99) = 2.73, 
p = 0.016, d = 0.68, η2 = 0.11, 3.5°]. Thus, even though the participants in the active localization group adapted 
their cursor movements slightly slower than the passive group, the active group showed a slightly larger shift in 
felt hand position, that didn’t quite reach significance for the counter rotation [t(58.93) = -0.15, p = 0.88]. This 
small separation between active and passive localization shifts reflects the updates in the predicted sensory 
consequences that further shift active hand localization compared to  passive19,23,27.

More importantly, Fig. 2c,d, show that these changes in state estimates are not captured by the slow process. To 
test this, we used the same, simple exponential decay model to quantify the rate of change in the passive and active 
localization data as well as in the models’ slow processes. The rates of change are much higher for the localization 

Table 2.  Model parameters and goodness-of-fit estimates. All twoRate AIC’s are smaller than respective 
oneRate AICs indicating a better model fit from a two-rate model. Relative likelihoods below .05 are bolded. 
Parameter values could vary between 0 and 1, inclusive.

Two-rate model parameters

Group Rs Ls Rf Lf MSE Two-rate AIC One-rate AIC One-rate likelihood

No-cursor 0.991 0.036 0.737 0.148 3.061 13.901 19.11 0.074

Pause 1 0.055 0.825 0.226 8.345 19.293 25.697 0.041

Active localization 0.999 0.03 0.76 0.158 4.053 15.605 27.004 0.003

Passive localization 1 0.054 0.74 0.236 7.425 19.548 27.207 0.022

https://osf.io/9db8v/
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data than the respective slow process [Passive: 3.4% < 100%, 95% CI 29.9–100%; Active: 2.1% < 93.9%, 95% CI 
63.2–100%]. Thus, shifts in hand localization in no way resemble the observable pattern of the slow process.

Given that the rate by which estimates of hand position changes do not match the slow process and saturate in 
1 trial (see Table 1), we next tested whether these shifts could simply be described as a proportion of the perturba-
tion. When the changes in hand position were fit with a linear regression estimating the proportion of the per-
turbation accounted for, we see a reasonable fit between actual hand location estimates and these simple models 
(see Fig. 3a,b). The fitted slopes are consistent with previous studies, where the change in felt hand position was 
usually 20–30% of the  perturbation19,31,32. Figure 3d,e shows a one-parameter model (black line) that estimates 
the size of the average localization shift as a proportion of the perturbation using all trials (colored lines). Even 
though the model over-estimates the size of change in hand localizations during the reversal period, it is clear that 
a step-wise function is a better fit than an exponential, further providing support for the conclusions that hand 
localizations shift incredibly fast, too fast to be the slow process in the two-rate model. The small over-estimate 
of this fit for reversal phase in the active localization group reflects what is a relatively slower rate of changes for 
this phase (for all measures, but not the slow process), which could partly reflect retrograde interference. None-
theless, the change in localization during the reversal seems to occur even prior to the change in cursor-reach for 
this reversed shift of perturbation (compare curves within Fig. 2d,e). Given that hand localization shifts occur 
before other changes, they are able to guide subsequent motor adaptation processes.

Implicit measures of learning. As both reach aftereffects and hand localization shifts are implicit and 
potentially driven by similar processes we compared the first test trial after the first rotated training trial and 
found no significant difference between the reach aftereffects, and either of the active [t(73.54) = − 1.08, p = 0.28] 
or passive [t(59) = −  1.81, p = 0.08] localization test trials. This finding is consistent with the relatively small 
correlations between angle at peak velocity during error clamp trials and the corresponding estimates of hand 
location seen in Fig. 3c. We speculate that these initial reach aftereffects may mainly reflect the changes in hand 
location estimates, or a similar training  signal14,19,26, before additional sources of information emerge to create 
even larger shifts in reach aftereffects but no further shift in hand localizations.

Speed of learning. While tangential to the main goal of this study, we found that intervening trials that 
involve active movements (no cursor, or active localization where participants moved their own trained hand) 

Figure 2.  Performance across measures for passive, active and pause groups. (a) Reach training performance 
averaged across all participants for each corresponding group. (b) Hand localization performance for the two 
groups. (c,d) Model predictions for the active and passive localization groups. All solid lines are an average of all 
participants in that group, shaded regions are 95% confidence intervals.
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slowed down learning when compared to just passive hand displacements or a pause in time. We can in fact 
predict for individual participants whether they made self-generated movements in the interleaved testing trials 
or not for 118/143 participants (82%; chance = 79/143 or 55%; p < 0.001 binomial exact test) based on a multiple 
logistic regression model without interactions, using the parameters of the two-rate model as predictors. The 
exponential decay model also predicts a much slower rate of change for reach training when the test trial involves 
an active movement (no-cursor: 13.8%, active localization 15.4%) compared to when it does not (pause: 26.5%, 
passive localization 27.0%). This shows that learning is slowed by having active intervening movements made in 
the absence of visual feedback. This means that our measures of the rate of change may be underestimating the 
real speed of implicit learning in some of the processes.

Discussion
While many studies measure and model the time course of reaches in response to a  perturbation13,33, very few 
investigate the emergence of other outcomes of training, such as reach aftereffects and changes in estimates of 
hand position, but see:28,29,34. In the current study, we measure implicit changes as reach aftereffects and estimates 
of the passively and actively displaced hand’s position, at high temporal resolution. This is accomplished by fol-
lowing every reach training trial that has aligned, rotated or error-clamped cursor feedback with one test trial. 
We find that reach aftereffects and changes in estimates of hand position emerge and saturate rapidly, within 1–3 
trials of visuomotor adaptation training (see Fig. 4). That is much faster than when reach adaptation saturates (9 
trials at best), let alone the two-rate model’s slow process (64 trials at best). This suggests that implicit changes do 
not follow explicit changes and play an important role in initial learning. Indeed, changes in hand-localization 
are so fast, they can best be explained as a proportion of the visual-proprioceptive discrepancy experienced on 
the previous trial. In sum, given that our measures of implicit learning saturate within 1–3 trials, implicit learn-
ing can hardly be characterized as “slow”.

As expected, reach performance with a rotated cursor for all four groups adhered well to a model that consists 
of a fast and a slow  process13. Adaptation, and hence implicit processes in other studies are sometimes slower 
than what we found for our four groups, especially in the case where targets span the entire radial  workspace13. 
However, given the fact that learning-induced changes in hand estimates and reach aftereffects saturate within 

Figure 3.  Linear and proportional fits between localization and error clamp trials. (a–c) Fits between 
localizations and either the size of the visual discrepancy (aligned = 0, first rotation = 30, second rotation = − 30), 
the absolute change in size of visual discrepancy (aligned = 0, first rotation = 30, second rotation = 60) and the 
participants average performance on the final 16 error clamp trials. The shaded regions represent the 95% 
confidence interval around the regression line. The last four initial rotation trials, the last four reversal trials and 
the last four aligned training trials were used for figures (a,b). (d,e) The proportional models’ prediction and the 
averaged participant performance for each localization test trial separately.
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one to three trials, i.e. before experiencing all four targets, it’s unlikely that this saturation would have been 
much delayed or reduced if we tested more locations. Regardless, all other processes would likely have slowed 
down as well, so that our direct measures of implicit adaptation would still be faster. Of note is also that while 
we found that some of the interleaved testing trials slowed down adaptation, the underlying implicit processes 
were still very fast.

Estimates of hand location are incredibly quick to shift, with participants only having to experience one 
rotated training trial to elicit the full shift. Hand localization responses are thought to measure the brain’s state 
estimate of hand position and likely rely on at least two signals: an efferent-based predictive component and 
an afferent-based proprioceptive component, that both change during visuomotor rotation  training23,35. Active 
localization reflects both, and indeed exhibits slightly larger shifts than passive hand localization, which is con-
sistent with previous  findings23,27, as is the size of the shift in hand localization of 20–30% of the  rotation18,29,31. 
We see here that a proportional fit seems to explain changes in hand estimates throughout the adaptation task, 
especially during the error-clamp phase where the size of the visual-proprioceptive discrepancy is determined 
by the size of the reach deviation. This is essentially a step-function which indicates that the process of changing 
estimates of hand location is qualitatively different from other processes of motor learning.

Reach aftereffects also emerge incredibly quickly, while not reaching asymptote as fast as shifts in hand locali-
zation. The similar size of aftereffects and hand localization shifts after just one rotated training trial potentially 
indicates a shared source. In addition, participants who perform no-cursor reaches with minimal instruction 
or more detailed instruction (to ensure strategy wasn’t used) show similar rates and extents of learning of reach 
aftereffects (see OSF; https ://osf.io/9db8v /), which is in line with some previous  findings24,36 . If no-cursor reach 
deviations reflect implicit changes in state estimation, these arise much quicker than previously thought bol-
stering recent claims that the earliest wave of muscle activity during adaptation is influenced by implicit motor 
 learning37.

Other work on the time-course of implicit adaptation uses primarily two approaches. Either implicit adapta-
tion is indirectly inferred from reach deviations and a measure of explicit  learning3,13, or it uses error-clamped 
feedback  paradigms12. Results from such approaches indicate that implicit learning is slow, and we can only 
speculate here about why our findings are so different. In the first approach, subtracting a measure of explicit 
adaptation from training reach deviations relies on a largely untested assumption that implicit and explicit adap-
tation linearly add to produce  behavior13,30. Aside from the effect the aiming task may have on  adaptation38,39, 
this is not a biologically plausible mechanism, and it should not be surprising that an actual measure of implicit 
adaptation, as we use here, shows a different time course. Our results set the nature of the mechanism by which 
implicit and explicit adaptation are combined as a topic for future study.

In the second approach for measuring implicit adaptation, which uses error-clamped feedback to get at the 
time course of implicit adaptation, participants are instructed about the nature of the paradigm, prompted to 
ignore the visual feedback, and faced with unnaturally smooth reach trajectories throughout the  task12,40. Since 
this context necessarily increases external error attribution it should also suppress implicit  learning41. This could 
explain why error-clamped feedback paradigms slow down implicit adaptation compared to how it naturally 
occurs here. In sum, both approaches to assessing implicit adaptation have drawbacks, that straightforward 
interleaving of trials doesn’t have, although our method does show some interference, potentially slowing down 
adaptation processes. It will remain an interesting challenge to unify results from all paradigms.

The results here raise a few other questions. We observe that reach aftereffects are as large as hand localization 
shifts after 1 trial of perturbed feedback, which may be an indication that hand localization shifts contribute to 
reach aftereffects. More compelling evidence comes from previous studies where a strong correlation between 
these measures was  found24,26. We have shown that the size of both proprioceptive and predictive components of 

Figure 4.  Overview of Results. For each of the five processes considered in the paper, the plot shows the change 
from baseline (0%) to the lower limit of the 95% confidence interval of the asymptote (100%). For the reach 
adaptation and the two-rate model’s slow process, the highest rate of change is used. As is clear, the measures of 
implicit adaptation (reach aftereffects and hand localization shifts) are faster than adaptation and much faster 
than the model’s slow process.

https://osf.io/9db8v/
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hand localization shifts can predict separate components of reach  aftereffects41. However, all evidence that hand 
localization shifts contribute to reach aftereffects is correlational, so that the mechanism remains unknown. In 
addition, while here we did manage to look at the time-course of implicit processes, the relevance for rehabili-
tation and skills training would lie in how these consolidate, as eventually we need to be able to move without 
exerting explicit control. That as little as 5 trials suffice for  savings42, is hopeful and in line with the high speed 
of implicit processes we find here.

Conclusion
We show here that the conventionally implicit components of motor learning; no-cursor reach deviations, and 
changes in estimates of hand location emerge very rapidly. The fast emergence of reach aftereffects and changes 
in hand estimates indicate implicit components of motor learning appear before or alongside explicit components 
of learning. Perhaps some implicit processes lead or maybe drive motor learning, unlike previously believed, 
as certainly they do not lag behind explicit processes. In addition, our results provide further evidence that 
implicit learning consists of at least two sub-processes that separately contribute to adaptation, and that both 
can be extremely fast.

Methods
Participants. 143 (mean age = 20.31, range = 17–46, females = 101) right-handed, healthy adults partici-
pated in this study. All participants gave written informed consent prior to participating. All procedures were in 
accordance with institutional and international guidelines. All procedures were approved by the York Human 
Participants Review Subcommittee.

Apparatus. The experimental set-up is illustrated in Fig. 5. While seated, participants held a vertical handle 
on a two-joint robot manipulandum (Interactive Motion Technologies Inc., Cambridge, MA, USA) with their 
right hand such that their thumb rested on top of the handle. A reflective screen was mounted horizontally, 
14 cm above the robotic arm. A monitor (Samsung 510 N, 60 Hz) 28 cm above the robotic arm presented visual 
stimuli via the reflective screen to appear in the same horizontal plane as the robotic arm. A Keytec touchscreen 
2 cm above the robotic arm recorded reach endpoints of the left hand, to unseen, right hand targets  (see18 for 
more details). Subject’s view of their training (right) arm was blocked by the reflective surface and a black cloth, 
draped over their right shoulder. The untrained, left hand was illuminated, so that any errors in reaching to the 
unseen, right target hand could not be attributed to errors in localizing the left, reaching hand.

Trial types. Reach‑training trials. Participants, regardless of group, reached as accurately as possible with 
their right hand to one of four possible target locations, 60°, 80°, 100° and 120°, which were shown once in a cycle 
of four trials before being repeated (see Fig. 5b). In all reaching trials, i.e., with cursor, with clamped cursor and 
with no cursor, participants had to reach out 12 cm from the home position to a force cushion within 800 ms. 
Participants received auditory feedback throughout training indicating if they met the distance-time criteria or 
not. The target would then disappear, and the robot manipulandum returned the right hand to the home posi-
tion where they waited 250 ms for the next trial. The hand cursor was aligned with the hand for the first 64 train-
ing trials, then rotated 30° CW for 160 training trials and then rotated 30° CCW for 16 training trials. This was 
followed by 48 error-clamped trials, dashed lines in Fig. 6, which were identical to the reach training trials except 
that the cursor always moved on a straight line to the target. The distance of the error-clamped cursor from the 
home position was identical to the distance of the hand from the home position.

Test trials. Participants alternated between one training trial, as described above, and one of four possible test 
trials. That is, test trials are interleaved with training. Each type of test trial was performed exclusively by partici-
pants in one group. These test trials were: (1) a no-cursor reach to a target, “No-cursor”, N = 47, (2) a short pause 
phase with no hand movement, “Pause”, N = 32, serving as a control group, (3) localization of the unseen hand 
position when the hand was passively moved by the robot, “Passive localization”, N = 32, or (4) localization of 
the unseen hand after it was actively moved by the participant, “Active localization”, N = 32. After each test trial, 
the robot returned the participants’ hand back to the home position. Test trials were always executed to one of 
two targets, 5° on either side of the training target, to reduce distance between test and training targets. All eight 
targets (55°, 65°, 75°, 85°, 95°, 105°, 115° and 125°; one on each side of each of the training targets) were cycled 
through before being repeated.

Reaching without a cursor. For the no-cursor group, their test trial required reaching out, again 12 cm, to one 
of the eight test targets (Fig. 5d) without a cursor representing their hand. The same distance-time criteria as 
in reach-training applied but without reinforcing sounds. This group originally had 32 participants who were 
simply told that there would be no cursor for these trials. We later add 15 more participants who were specifi-
cally told not to include any learned strategy, similar to a previous study in our lab that used a PDP technique 
and showed no explicit component for a 30°  rotation24,25. Since the results did not differ between these two 
sub-groups, (see OSF for details: https ://osf.io/9db8v /), the results were collapsed for analyses. Our results are 
consistent with the current idea that implicit learning caps around 15°12 and previous studies which found no 
difference in the size of reach aftereffects when participants are not told about the rotation, then during a set of 
no-cursor trials, either include or exclude any strategy developed in the training  trials24,25,36.

https://osf.io/9db8v/
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Hand localization. The two hand localization groups did test trials measuring estimates of unseen hand loca-
tion in order to assess different components of state-estimation, after every training trial. For both localization 
trials (Fig. 5c), a white arc would appear on the screen, spanning from 0° to 180°, the arc was 12 cm away from 
the home position. Then the hand was either passively displaced by the robot to one of the eight target locations 
(passive localization) or the hand movement was self-generated by the participant (active localization). Passive 
movement of the hand took 650 ms to cover the 12 cm distance. In active localization trials, participants chose 

Figure 5.  Experimental setup and design. (a) Side view of the experimental set-up. The top layer is the monitor, 
middle layer is the reflective screen, and the bottom opaque layer is the touchscreen. The robot is depicted 
beneath with the participants’ right hand grasping it. (b–d) Top views of task specific set-ups. (b) Training (and 
Clamp) trial. The home position is represented by a green circle with a 1 cm diameter; located approximately 
20 cm in front of the subject . Targets are represented by white circles with a 1 cm diameter located 12 cm 
radially from the home position at 60°, 80°, 100° and 120°. Participants hand cursor was also a 1 cm diameter 
blue circle. (c) Localization test trial. Participants were either passively moved to one of the eight target 
locations, or actively moved their hand in the direction suggested by the white wedge, consisting of two short 
straight lines (V-shaped) at the home position, these real and suggested locations are 55°, 65°, 75°, 85°, 95°, 105°, 
115° and 125°. Subsequently, participants used a touch screen to indicate on a white arc spanning 180° where 
their unseen right hand was. (d) No-cursor test trial. Participants made ballistic reaches to one of the 8 target 
locations also used in localization without any visual feedback of their movement. Figures were made using 
Poser Rendering Software version 11, https ://www.poser softw are.com/.

Figure 6.  Experimental Schedule. Participants reached to visual targets with a perturbation denoted by the 
black line. The dotted line at the end of the paradigm signifies clamp trials where there was no visual error as the 
cursor always moved to the target regardless of the participants movement direction. Trials included in analysis 
are as follows: R1 = trials 65–68; R1_Late = trials 221–224; R2 = trials 237–240; EC = 273–288.

https://www.posersoftware.com/
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their own hand-target location. They were guided with a small V-shaped, 30° wedge that appeared at the home 
position, the middle of the V-shaped wedge was oriented to the passive localization targets. This active, self-
generated movement was stopped by a force cushion at the 12 cm mark. Regardless of localization trial type once 
their right, unseen target hand was locked in place, participants used their visible, left index finger, to indicate 
on the touchscreen, along a 180° arc, where they believed their right, stationary, unseen hand was. The arc was 
continuously visible until the touchscreen registered the participants estimate.

Data analysis. We analyzed the reach-training for the no-cursor group and the two hand localization 
groups separately using the pause group as a control. The reach training trials, hand localization trials and no-
cursor trials were analyzed separately from each other, but their rates of change (see below) can be compared.

Reaching with a cursor and clamp trials. To quantify reach performance during training, the angular difference 
between a straight line from the home position to the target and a straight line from the home position and the 
point of maximum velocity is computed.

Hand localization. Estimates of hand location in both the passive and active localization groups were based 
on the angular endpoint error between the movement endpoint of the right unseen hand and the left hands 
responses on the touchscreen.

Reaching without a cursor. To determine if participants exhibit reach aftereffects as a result of training, we 
measured reach endpoint errors during no-cursor trials. The reach error is calculated based on the angular devi-
ation between the reach endpoint and the target location, relative to the home position. We used the endpoint 
error, instead of maximum velocity to be able to compare no-cursor trials to hand localization trials. However, 
a comparison between no-cursor reach deviations at endpoint and at maximum velocity is included in the R 
notebook.

Analyses. All data was visually screened for incorrect trials. Subsequently, outliers of more than three stand-
ard deviations across participants within each trial were also deleted. In all, 2.2% of the data was removed. One 
participant had to be removed from the no-cursor instructed group as they did not complete the task appropri-
ately. All measures were normalized, by subtracting out each subjects’ average performance during the second 
half of the aligned session (e.g. trials 33–64). To see if there were changes in training and test trials, we conducted 
ANOVAs consisting of a within-subjects factor of trial set and a between-subjects factor of group. The trial-set 
factor consisted of four levels: the first 4 rotated trials (R1), the final 4 trials from the first rotation (R1_Late), the 
final 4 trials from the second rotation (R2) and the last 16 trials, to allow for a less noisy estimate, from the clamp 
phase (EC). All analyses ignored target location, but each bin of four trials contains a trial to each of the four 
training targets (effects at different target angles are not distinguishable, see the R notebook). Significant main 
effects and interactions were followed-up by pairwise comparisons. All results are reported with a Welch t-test 
and an alpha of 0.05, where necessary with an fdr correction applied using the p.adjust function in R.

Two‑rate model. We fitted the two-rate  model30 to our data. This two-rate model is composed of a slow process 
that slowly increases over time until it is the driving force of performance, and a fast process that rises quickly but 
eventually decays back to zero. The sum of these two processes determines the overt behaviour and can explain 
the rebound seen in the error-clamp phase. During error-clamps, neither process learns, but the fast process will 
forget how it adapted to the counter rotation, while the slow process still exhibits part of its adaptation from the 
long initial training, resulting in a rebound.

This model postulates the reaching behavior exhibited on trial t  (Xt1), is the sum of the output of the slow 
 (Xs,t1) and fast process  (Xf,t1) on the same trial:

Both processes learn from errors on the previous trial  (et0) by means of a learning rate  (Ls and  Lf), and they 
each retain some of their previous state  (Xs,t0 and  Xf,t0) by means of their retention rates  (Rs and  Rf):

The model is further constrained by making sure the learning rate of the slow process is lower than that of 
the fast process:  Ls < Lf, and by having the retention rate of the slow process be larger than that of the fast process: 
 Rs > Rf. We constrained the parameters to the range [0,1].

All model fitting was done on the mean angular reach deviation at peak velocity during all training reaches, 
regardless of target angle. The error term was set to zero during the final error clamp phase of the experiment, 
as the participant did not experience any performance error. The model was fit in R 3.6.143 using a least mean-
squared error criterion on the six best fits resulting from a grid-search. The parameter values corresponding to 
the lowest MSE between data and model was picked as the best fit, and this was repeated for all groups.

Rate of change. We used an exponential decay function with an asymptote to estimate the rate of change for 
each of the three trial types. The value of each process on the next trial  (Pt1) is the current process’ value  (Pt0) 

Xt1 = Xs,t1 + Xf ,t1

Xs,t1 = Ls ∗ et0 + Rs ∗ Xs,t0

Xf ,t1 = Lf ∗ et0 + Rf ∗ Xf ,t0
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minus the product of the rate of change (L) multiplied by the error on the current trial, which is the difference 
between the asymptote (A) and the process’ value on the current trial  (Pt0).

The parameter L was constrained to the range [0,1], and the parameter A to [0,2·max(data)]. For all groups, 
this model was fit to (1) the slow process from the two-rate model, and (2) the reach data. It was also fit to each 
group’s test trial data; (3) no-cursor reach deviations and both (4) active and (5) passive localizations. For the 
latter three kinds of fits, a zero was prepended to account for the fact that responses in these trials already changed 
through the previous training trial. The parameters were also bootstrapped (1 k resamples per fit) across partici-
pants to get a 95% confidence interval for both parameters. The first trial where the modelled process based on the 
group average fell inside the bootstrapped confidence interval for the asymptote is taken as the saturation trial.

The datasets for the current study are available on Open Science Framework, https ://osf.io/9db8v /, while 
the code and analysis scripts are available on github https ://githu b.com/JennR 1990/TwoRa tePro prioc eptio n.
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