Modelling the Effects of Lifestyle and Demographics on Cognition: A Factor Analysis Approach

Sarah V. Park^{1,2}

@SarahVPark_

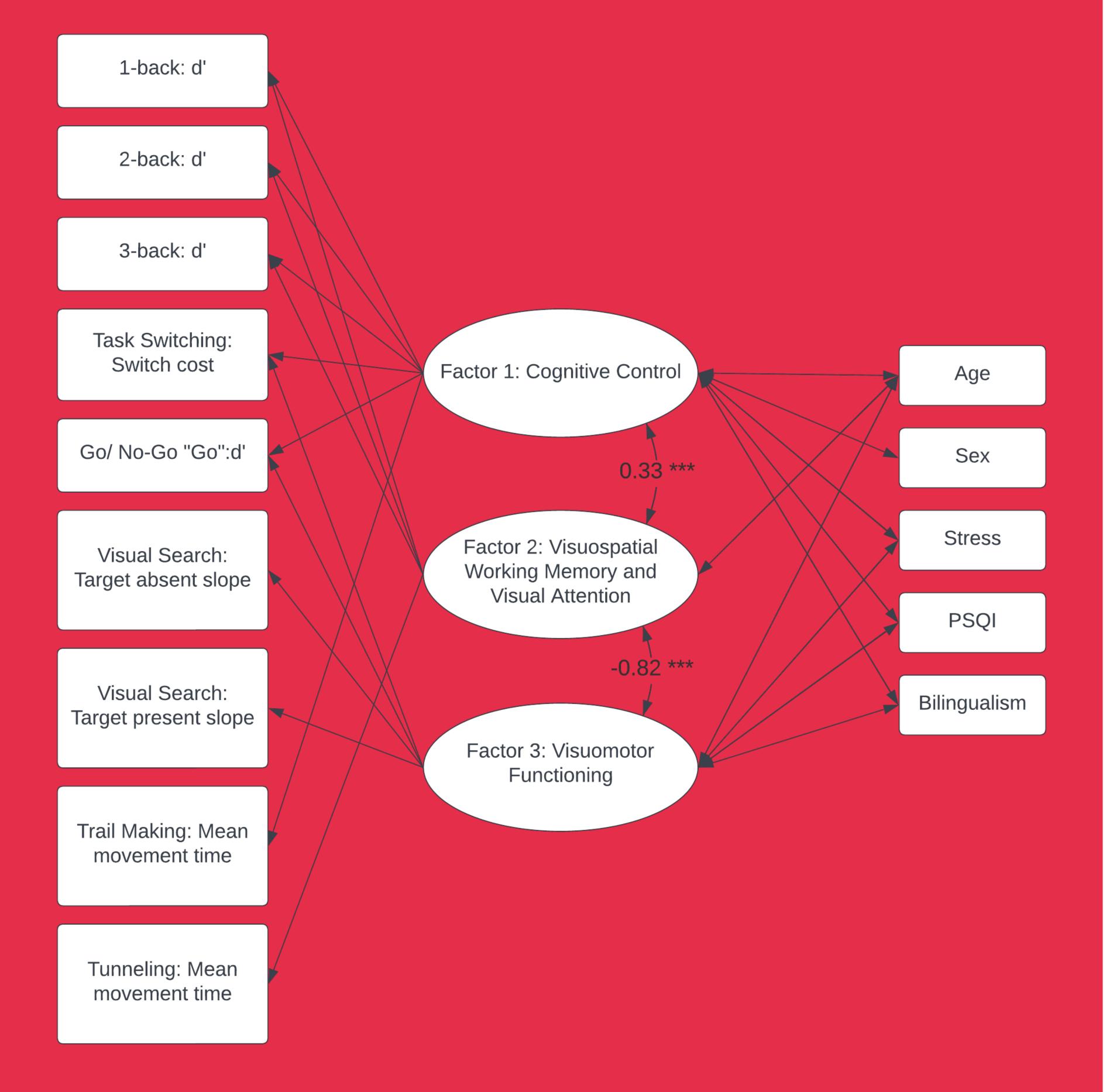
svpark@yorku.ca

B. Marius 't Hart¹, Ji Yeh Choi², Denise Y.P. Henriques¹ ¹Centre for Vision Research & ²Department of Psychology, York University, Toronto

BACKGROUND

- Models of cognition suggest several core components: cognitive control, working memory and attention, and visuomotor functioning
- Lifestyle and demographic attributes are known to be related to cognitive performance
- Modelling latent factors and lifestyle and demographics variables simultaneously is possible through Regularized SEM (RegSEM)

METHODS


- 1141 participants (781 female, $M_{age} = 23.13$ years)
- Completed demographic and lifestyle questionnaires, and a battery of cognitive tasks online
- {Demographic] age, sex, birth method
- [Lifestyle] fitness, stress, affect (PANAS), sleep quality (PSQI), cannabis frequency of use, bilingualism
- [Cognitive tasks] N-back, task-switching, go/nogo, visual search, trail-making, tunneling task
- RegSEM penalizes large models with many low loadings

RESULTS

- Birth method, fitness, affect, and cannabis frequency were not loaded onto any cognitive latent variables
- Task switching nor visual search loaded onto visuospatial working memory and visual attention
- Cognitive control and visuomotor function were not significantly covaried

Demographics & lifestyle predict cognition & behaviour

- Toward a causal model

All Model Loadings

Latent Variable		Measured variable	Loading
Cognitive	=~	1-back: d'	0.62 ***
		2-back: d'	1.55 ***
		3-back: d'	0.97 ***
		switch cost	-0.35 ***
		gng "go": d'	0.17 ***
		trail. MT	-0.63 ***
	~~	age	-0.46 ***
		sex	-0.10 *
		stress	0.18 ***
		PSQI	-0.27 ***
		bilingualism	-0.13 **
WM and Attn	=~	1-back: d'	0.52 ***
		2-back: d'	1.54 ***
		3-back: d'	0.95 ***
		tun. MT	0.54 ***
	~~	age	0.51 ***
		stress	-0.24 ***
		PSQI	0.21 ***
		bilingualism	0.11 *
Visuomotor	=~	switch cost	0.23 ***
		gng "go": d'	0.15 ***
		vis. absent	0.79 ***
		vis. present	0.88 ***
	~~	age	0.25 ***

Note. * p < .05, ** p < .01, *** p < .001

Final model fit indices

- $\chi^2(108) = 739.192$
- RMSEA = 0.72, 90% CI [0.067, 0.076]
- SRMR = 0.089
- GFI = 0.910, CFI = 0.723, TLI = .607
- BIC = 42039.980

CONCLUSIONS AND FUTURE DIRECTIONS

- Not all demographic and lifestyle variables were related to the cognitive latent variables
- Future directions: Infer causal relationships between demographic and lifestyle variance and the latent cognitive variables

Next Steps

- Analyze the nature of missing data
- Compare to a PCA approach for dimensionality reduction of the cognitive task data
- Run directional analyses

