Reevaluating Strategy Development as a Single-Step Process in Visuomotor Adaptation Elysa Eliopulos, Bernard Marius 't Hart, Denise Y. P Henriques

Strategic behaviours in motor adaptation are known to develop as a learning curve

Explicit visuomotor adaptation is thought to increase gradually and **monotonically** until it reaches an asymptote (McDougle et al. 2015). It is believed that these patterns emerge from averaging all participant data.

Explicit learning may instead develop as a 'step'

We aim to investigate the influence of rotation size on individual strategy development and to deepen the understanding of explicit adaptation processes in a visuomotor rotation task.

Explicit learning is measured via 'aiming'

"Your goal is to move a cursor straight to a target. At some point, the cursor may move differently"

Participant Aiming Behaviour

Proportion of Strategy Users

Participant Mean Aim Deviation Across Rotation Sizes

Empirical Distribution of Aiming Responses

 \checkmark

∆i7

Trial

Main Takeaways

 Individual participant data suggests that aiming strategies may develop in one or two discrete steps.

 Rotation size may influence the development of aiming behaviour in a VMR task.

• Understanding how task features drive explicit adaptation may reveal the nature of cognition in motor learning.

Next Steps

• Empirically estimate parameters for each rotation size. • Test and compare functions (e.g., gamma, Poisson, logarithmic, etc.) to identify which best captures the likelihood of making a step.