Vibrotactile feedback for postural adjustment during fine sensorimotor tasks: Two studies investigating optimal algorithms and stimulus parameters

Alice Atkin¹, William Bonin², Samuel Brost², Bernard Marius 't Hart¹, Sebastian Tomescu³, Bradley Strauss³, Cari Whyne³, Qingguo Li², & Denise Henriques¹

¹York University

²Queens University

³Sunnybrook Health Sciences Centre

Background

- Healthcare workers have high rates of musculoskeletal injuries due to poor posture¹
- A wearable biofeedback device could reduce injury, if used effectively and safelv²
- Sensors can detect when posture is maladaptive, while vibrotactile stimulation can inform the user and prompt corrective action
- Study 1 tested two algorithms for delivering feedback, while Study 2 is investigating optimal stimulation parameters for use during motor tasks

Experiment 1 - Results

EVA feedback significantly reduces time in maladaptive posture vs. RULA feedback and no feedback. Neither feedback increases task duration or cognitive workload

Control

RULA Feedback EVA Feedback

Condition	RULA 1-2 [s]	RULA 3-4 [s]	RULA 5 [s]	RULA 6 [s]
Control	20.08 ±6.13	496.75 ±34.13	74.22 ±21.02	0.00 ±0.00
RULA-based Feedback	22.39 ±4.71	454.42 ±25.79	20.35 ±6.91	0.03 ±0.03
EVA-based Feedback	23.29 ±5.80	470.24 ±21.53	5.47 ±1.50	0.06 ±0.06

Conclusions and Future Directions

- EVA-based feedback with an integrated sensor-motor can significantly reduce maladaptive posture during manual tasks.
- Duration and strength of vibrotactile stimulus affects detection rate; target size affects movement time and endpoint variance on manual aiming task.
- Does combining the vibrotactile detection task with the aiming task impair performance on either task? Higher PSE? Slower movements, or less precise movement endpoints?

Experiment 1 - Methods

30 Participants (14M, 16F, age 22.9 ± 1.7 years)

Three feedback conditions:

- 1. No feedback
- 2. Rapid Upper Limb Assessment (RULA) category feedback; automatic stimulation at Category 5+
- 3. Exposure Variation Analysis, which weighs scores by RULA category and duration of exposure

$$TWE = \sum_{m=1}^{M} R_m \sum_{i=1}^{7} T_{m,i} * 2^{E_i}$$
• $M = \text{Number of RULA categories (3-4, 5-6, 6+),}$
• $R_m = \text{RULA multiplier (1, 1.5, 2 for increasing RULA categories is increasing RULA categories in increasing RULA categories (3-4, 5-6, 6+),

• $R_m = \text{RULA multiplier (1, 1.5, 2 for increasing RULA categories (3-4, 5-6, 6+),}$
• $I_{m,i} = \text{time spent in RULA category mat the time period } I_{m,i} = I_{m,i} =$$

SURG-TXL questionnaire to measure cognitive workload³

Experiment 2

- Still in pilot stage goal is a dual-task paradigm combining vibrotactile stimulation and an aiming task – does dual-task slow movement and / or reduce detction rates?
- Vibrotactile Detection Task (N = 4):
 - 3 stimulus durations (33, 50, 67ms) delivered to the index finger or upper back
 - Varied intensity and fit psychometric curves to detection rates

- Aiming Task (N = 4):
 - 2 target sizes, 6 locations -->
 - Measured movement time and endpoint error
- As expected, small targets result in less variable but slower movements

1. Xu AL, et al. (2023). JBJS Review. 2. Kim W et al. (2022). IEEE Trans Haptics 3. Wilson MR et al. (2011). World J Surg